Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Application Domains

Intracellular processes

Significant cell-to-cell heterogeneity is ubiquitously-observed in isogenic cell populations. Cells respond differently to a same stimulation. For example, accounting for such heterogeneity is essential to quantitatively understand why some bacteria survive antibiotic treatments, some cancer cells escape drug-induced suicide, stem cell do not differentiate, or some cells are not infected by pathogens.

The origins of the variability of biological processes and phenotypes are multifarious. Indeed, the observed heterogeneity of cell responses to a common stimulus can originate from differences in cell phenotypes (age, cell size, ribosome and transcription factor concentrations, etc), from spatio-temporal variations of the cell environments and from the intrinsic randomness of biochemical reactions. From systems and synthetic biology perspectives, understanding the exact contributions of these different sources of heterogeneity on the variability of cell responses is a central question.

The main ambition of this project is to propose a paradigm change in the quantitative modelling of cellular processes by shifting from mean-cell models to single-cell and population models. The main contribution of Xpop focuses on methodological developments for mixed-effects model identification in the context of growing cell populations.